
Non-asymptotic rate for Random Shuffling for Quadratic functions

Raghav Somani

July 12, 2018

There have been many recent efforts understanding why Random Shuffling empirically converges faster than SGD.
At each iteration, SGD samples a uniform index i ∈ [n] and uses the stochastic gradient ∇fi to compute its update.
Uniformly sampling an index makes the stochastic gradient an unbiased estimate of the true gradient ∇f . However
what actually is used in practice, and is computationally more practical, is a similar variant where at each epoch an
index is uniformly sampled without replacement from a random permutation instead of sampling an index uniformly
with replacement.

Empirically Random Shuffling is known to be faster than vanilla SGD [1] and understanding this discrepancy in
theory and practice has been an open problem since long. Some known results that are available, show that Ran-
dom Shuffle is not much worse than SGD [5] provided the number of epochs is not too large, while it has also been
shown that Random Shuffle is faster than SGD asymptotically at the rate O

(
1
T 2

)
[2] compared to SGD that has an

asymptotic rate of O
(
1
T

)
, where T is the number of iterations. Under small fixed step size conditions, it has also

been shown that the Random Shuffling converges to a smaller neighborhood compared to SGD [6], also discussed
in one of my blogs here. Inspired from all the past works, there has been a recent attempt [3] where the authors

come up with a non-asymptotic rate O
(

1
T 2 + n3

T 3

)
, omitting constants and logarithmic factors, with n being the

number of components in the function f , which is strictly better than SGD under reasonable conditions. The focus
of this article is to throw light on this result by considering a quadratic objective function.

We consider minimization of the finite sum problem

f(x) =
1

n

n∑
i=1

fi(x) (0.0.1)

It is assumed that the functions f and fi’s are µ-strongly convex and L-smooth respectively, i.e.,

f(x) ≥ f(y) + 〈∇f(y),x− y〉+
µ

2
‖x− y‖22 (0.0.2)

‖∇fi(x)−∇fi(y)‖2 ≤ L ‖x− y‖2 (0.0.3)

Because f(x) is strongly convex, let x∗ be its minimizer. Also, let κ = L
µ denote the condition number of the

function f .
The Random Shuffling update can be written as

xtk = xtk−1 − ηt∇fσt(k)(x
t
k−1) (0.0.4)

where xtk = x(t−1)n+k represents the k-th iteration within the t-th epoch. The step size for the t-th epoch is denoted
by ηt and σt denotes the random permutation of [n] with σt(k) being its k-th index. For two consecutive epochs,
xtn = xt+1

0 and x1
0 = x0.

1 Random Shuffle for Quadratic

For a simplistic start, let us first deal with the simple quadratic case of (0.0.1) where

fi(x) =
1

2
xTAix + bTi x i = 1, . . . , n (1.0.1)

1

https://raghavsomani.github.io/posts/2018/04/blog-post-4/


where Ai ∈ Rd×d is positive semi-definite and bi ∈ Rd. The Hessians of quadratic functions are constant, which
makes the analysis simpler. We further assume that the domain and the norm of the gradient in the domain is
bounded as

‖x− x∗‖2 ≤ D,
‖∇fi(x)‖2 ≤ G i = 1, . . . , n

1.1 Convergence Analysis

Considering the tth epoch as a whole

xti = xti−1 − ηt∇fσt(i)(x
t
i−1)

=⇒ xtn = xt0 − ηt
n∑
i=1

∇fσt(i)(x
t
i−1)

xtn − x∗ = xt0 − x∗ − ηt
n∑
i=1

∇fσt(i)(x
t
i−1) (1.1.1)

Taking Euclidean norm on both sides and squaring we get

∥∥xtn − x∗
∥∥2
2

=

∥∥∥∥∥xt0 − x∗ − ηt
n∑
i=1

∇fσt(i)(x
t
i−1)

∥∥∥∥∥
2

2

=
∥∥xt0 − x∗

∥∥2
2
− 2ηt

〈
xt0 − x∗,

n∑
i=1

∇fσt(i)(x
t
i−1)

〉
+ η2t

∥∥∥∥∥
n∑
i=1

∇fσt(i)(x
t
i−1)

∥∥∥∥∥
2

2

(1.1.2)

Defining the error term Rt as

rt =

n∑
i=1

∇fσt(i)(x
t
i−1)−

n∑
i=1

∇fσt(i)(x
t
0)

=

n∑
i=1

∇fσt(i)(x
t
i−1)− n∇f(xt0) (1.1.3)

From (1.1.2) and (1.1.3) we get∥∥xtn − x∗
∥∥2
2

=
∥∥xt0 − x∗

∥∥2
2
− 2nηt

〈
xt0 − x∗,∇f(xt0)

〉
− 2ηt

〈
xt0 − x∗, rt

〉
+ η2t

∥∥n∇F (xt0) + rt
∥∥2
2

≤
∥∥xt0 − x∗

∥∥2
2
− 2nηt

[
Lµ

L+ µ

∥∥xt0 − x∗
∥∥2
2

+
1

L+ µ

∥∥∇f(xt0)
∥∥2
2

]
− 2ηt

〈
xt0 − x∗, rt

〉
+ η2t

∥∥n∇F (xt0) + rt
∥∥2
2

(From Theorem 2.1.11 in [4])

≤
(

1− 2nηt
Lµ

L+ µ

)∥∥xt0 − x∗
∥∥2
2
−
(

2nηt
L+ µ

− 2η2t n
2

)∥∥∇f(xt0)
∥∥2
2
− 2ηt

〈
xt0 − x∗, rt

〉
+ 2η2t

∥∥rt∥∥2
2

(1.1.4)

Taking expectations with respect to σt on both side of (1.1.4) we have

E
[∥∥xtn − x∗

∥∥2
2

]
≤
(

1− 2nηt
Lµ

L+ µ

)∥∥xt0 − x∗
∥∥2
2
−
(

2nηt
L+ µ

− 2η2t n
2

)∥∥∇f(xt0)
∥∥2
2

− 2ηt
〈
xt0 − x∗,E

[
rt
]〉

+ 2η2tE
[∥∥rt∥∥2

2

]
(1.1.5)

We can separately analyze the two terms with expectations in (1.1.5)

∥∥rt∥∥
2

=

∥∥∥∥∥
n∑
i=1

∇fσt(i)(x
t
i−1)−

n∑
i=1

∇fσt(i)(x
t
0)

∥∥∥∥∥
2

2



≤
n∑
i=1

∥∥fσt(i)(x
t
i−1)− fσt(i)(x

t
0)
∥∥
2

=

n∑
i=1

∥∥∥∥∥∥
i−1∑
j=1

fσt(i)(x
t
j)− fσt(i)(x

t
j−1)

∥∥∥∥∥∥
2

≤
n∑
i=1

i−1∑
j=1

L
∥∥xtj − xtj−1

∥∥
2

≤
n∑
i=1

i−1∑
j=1

L
∥∥−ηt∇fσt(j)(x

t
j−1)

∥∥
2

≤ ηtL
n∑
i=1

i−1∑
j=1

G

=
n(n− 1)

2
ηtLG (1.1.6)

It is to note that the above bound is a deterministic bound independent of the random permutation, therefore there
might be a scope of tightness while talking about the expectation.
From (1.1.6) we have

E
[∥∥rt∥∥2

2

]
≤ n4

4
η2tG

2L2 (1.1.7)

And,

rt =

n∑
i=1

[
∇fσt(i)(x

t
i−1)−∇fσt(i)(x

t
0)
]

=

n∑
i=1

[
Hσt(i)(x

t
i−1 − xt0)

]
=

n∑
i=1

Hσt(i)

i−1∑
j=1

[
−ηt∇fσt(j)(x

t
j−1)

]
=

n∑
i=1

−ηtHσt(i)

i−1∑
j=1

[
∇fσt(j)(x

t
0) +

(
∇fσt(j)(x

t
j−1)−∇fσt(j)(x

t
0)
)]

= −ηt
n∑
i=1

Hσt(i)

i−1∑
j=1

∇fσt(j)(x
t
0)− ηt

n∑
i=1

Hσt(i)

i−1∑
j=1

[
∇fσt(j)(x

t
j−1)−∇fσt(j)(x

t
0)
] (1.1.8)

Separately analyzing the two terms in (1.1.8)

at := −ηt
n∑
i=1

Hσt(i)

i−1∑
j=1

∇fσt(j)(x
t
0)

bt := −ηt
n∑
i=1

Hσt(i)

i−1∑
j=1

[
∇fσt(j)(x

t
j−1)−∇fσt(j)(x

t
0)
]

Then we have

E
[
at
]

= −n(n− 1)

2
ηtEi 6=j

[
Hi∇fj(xt0)

]
, (1.1.9)

∥∥bt∥∥
2
≤ ηt

n∑
i=1

∥∥Hσt(i)

∥∥
2

i−1∑
j=1

∥∥∇fσt(j)(x
t
j−1)−∇fσt(j)(x

t
0)
∥∥
2


3



≤ ηt
n∑
i=1

L i−1∑
j=1

(j − 1)ηtGL


≤ η2tL2G

n∑
i=1

(i− 1)(i− 2)

2

≤ 1

2
η2tL

2Gn3 (1.1.10)

Now expanding the first term with expectation in (1.1.5), we have

−2ηt
〈
xt0 − x∗,E

[
rt
]〉

= −2ηt
〈
xt0 − x∗,E

[
at
]〉
− 2ηt

〈
xt0 − x∗,E

[
bt
]〉

= η2t n(n− 1)
〈
xt0 − x∗,Ei 6=j

[
Hi∇fj(xt0)

]〉
− 2ηt

〈
xt0 − x∗,E

[
bt
]〉

(1.1.11)

The first term in (1.1.11)

η2t n(n− 1)
〈
xt0 − x∗,Ei 6=j

[
Hi∇fj(xt0)

]〉
=η2t n(n− 1)

〈
xt0 − x∗,Ei 6=j

[
Hi

[
∇fj(xt0)−∇fj(x∗)

]]〉
+ η2t n(n− 1)

〈
xt0 − x∗,Ei 6=j [Hi∇fj(x∗)]

〉
≤η2t n(n− 1)

〈
xt0 − x∗,Ei,j [HiHj ]

(
xt0 − x∗

)〉
+ η2t n(n− 1)

[
λ1
2

∥∥xt0 − x∗
∥∥2
2

+
1

2λ1
‖δ‖22

]
=η2t n(n− 1)

∥∥∇f(xt0)
∥∥2
2

+
1

4
ηtµ(n− 1)

∥∥xt0 − x∗
∥∥2
2

+ η3t µ
−1n2(n− 1) ‖δ‖22 (1.1.12)

Here δ := Ei 6=j [Hi∇fj(x∗)] and λ1 := 1
2µη

−1
t n−1. Bounding the norm of δ we get

‖δ‖2 = ‖Ei6=j [Hi∇fj(x∗)]‖2

=

∥∥∥∥∥∥ 1

n(n− 1)

 n∑
i=1

Hi

n∑
j=1

∇fj(x∗)−
n∑
i=1

Hi∇fi(x∗)

∥∥∥∥∥∥
2

=

∥∥∥∥∥− 1

n(n− 1)

[
n∑
i=1

Hi∇fi(x∗)

]∥∥∥∥∥
2

=
1

n− 1
‖Ei [Hi∇fi(x∗)]‖2

≤ 1

n− 1
LG (1.1.13)

Using (1.1.13) in (1.1.12) we get

η2t n(n− 1)
〈
xt0 − x∗,Ei 6=j

[
Hi∇fj(xt0)

]〉
≤ η2t n(n− 1)

∥∥∇f(xt0)
∥∥2
2

+
1

4
ηtµ(n− 1)

∥∥xt0 − x∗
∥∥2
2

+
η3t µ
−1n2L2G2

n− 1

≤ η2t n(n− 1)
∥∥∇f(xt0)

∥∥2
2

+
1

4
ηtµ(n− 1)

∥∥xt0 − x∗
∥∥2
2

+ 2η3t µ
−1nL2G2

(1.1.14)

The second term in (1.1.11)

−2ηt
〈
xt0 − x∗,E

[
bt
]〉
≤ 2ηt

[
λ2
2

∥∥xt0 − x∗
∥∥2
2

+
1

2λ2

∥∥E [bt]∥∥2
2

]
Setting λ2 := 1

4µ(n− 1), we get

−2ηt
〈
xt0 − x∗,E

[
bt
]〉
≤ 1

4
ηtµ(n− 1)

∥∥xt0 − x∗
∥∥2
2

+ 4ηtµ
−1(n− 1)−1

∥∥E [bt]∥∥2
2

≤ 1

4
ηtµ(n− 1)

∥∥xt0 − x∗
∥∥2
2

+ µ−1(n− 1)−1η5tL
4G2n6

≤ 1

4
ηtµ(n− 1)

∥∥xt0 − x∗
∥∥2
2

+ 2µ−1η5tL
4G2n5 (1.1.15)

4



Plugging in (1.1.14) and (1.1.15) in (1.1.11) we get

−2ηt
〈
xt0 − x∗,E

[
rt
]〉
≤ η2t n2

∥∥∇f(xt0)
∥∥2
2

+
1

2
ηtµ(n− 1)

∥∥xt0 − x∗
∥∥2
2

+ 2η3t µ
−1nL2G2 + 2µ−1η5tL

4G2n5 (1.1.16)

Plugging back (1.1.16) and (1.1.7) back in (1.1.5) we get

E
[∥∥xtn − x∗

∥∥2
2

]
≤
(

1− 2nηt
Lµ

L+ µ

)∥∥xt0 − x∗
∥∥2
2
−
(

2nηt
L+ µ

− 2η2t n
2

)∥∥∇f(xt0)
∥∥2
2

η2t n
2
∥∥∇f(xt0)

∥∥2
2

+
1

2
ηtµ(n− 1)

∥∥xt0 − x∗
∥∥2
2

+ 2η3t µ
−1nL2G2 + 2µ−1η5tL

4G2n5 +
n4

2
η4tG

2L2

=

(
1− 2nηt

Lµ

L+ µ
+

1

2
ηtµ(n− 1)

)∥∥xt0 − x∗
∥∥2
2
−
(

2nηt
L+ µ

− 3η2t n
2

)∥∥∇f(xt0)
∥∥2
2

+ 2η3t µ
−1nL2G2 + 2µ−1η5tL

4G2n5 +
n4

2
η4tG

2L2 (1.1.17)

Note that because κ ≥ 1, we always have

nηt
Lµ

L+ µ
>

1

2
η2µ(n− 1) (1.1.18)

We also assume that ηt is such that the coefficient of ‖∇f(xt0)‖22 is always non-positive, that is

2nηt
L+ µ

≥ 3η2t n
2

=⇒ ηt ≤
2

3n(L+ µ)
∀ t ≥ 1 (1.1.19)

Again, we assume that the coefficient of ‖xt0 − x∗‖22 is positive, which would imply

nηt
Lµ

L+ µ
< 1 ∀ t ≥ 1

Using (1.1.18) and (1.1.19) in (1.1.17) we get

E
[∥∥xtn − x∗

∥∥2
2

]
≤
(

1− nηt
Lµ

L+ µ

)∥∥xt0 − x∗
∥∥2
2

+ η3t nC1 + η5t n
5C2 + η4t n

4C3 (1.1.20)

where C1 = 2L
2G2

µ , C2 = 2L
4G2

µ and C3 = 1
2L

2G2. Unrolling (1.1.20) for all epochs, we get

E
[∥∥xtn − x∗

∥∥2
2

]
≤

t∏
i=1

(
1− nηi

Lµ

L+ µ

)∥∥xt0 − x∗
∥∥2
2

+

t−1∑
i=0

i−1∏
j=0

(
1− nηt−j

Lµ

L+ µ

)(
η3t−inC1 + η5t−in

5C2 + η4t−in
4C3

)
(1.1.21)

Setting ηt = η = 4 lognt
µnt , and let T = nt, we get

E
[∥∥xtn − x∗

∥∥2
2

]
≤
(

1− n4 log nt

µnt

Lµ

L+ µ

)t ∥∥xt0 − x∗
∥∥2
2

+ t
(
η3nC1 + η5n5C2 + η4n4C3

)
=

(
1− 2 log nt

t

) t
2 log nt 2 lognt ∥∥xt0 − x∗

∥∥2
2

+
T

n

(
64(log T )3

µ3T 3
nC1 +

1024(log T )5

µ5T 5
n5C2 +

256(log T )4

µ4T 4
n4C3

)
≤ 1

T 2

∥∥xt0 − x∗
∥∥2
2

+ C4
(log T )3

T 2
+ C5n

3 (log T )4

T 3
+ C6n

4 (log T )5

T 4
(1.1.22)

Bringing back the assumptions we have made till now, we get the following constraints on the step size

4 log T

µT
≤ 2

3n(L+ µ)

5



=⇒ T

log T
≥ 6n(1 + κ) (1.1.23)

And, n
4 log T

µT

Lµ

L+ µ
< 1

=⇒ T

log T
> 4n

L

L+ µ
(True if (1.1.23) holds)

Therefore, with step-size chosen as ηt = 4 log T
µT , after O (κ) number of epochs, we can guarantee that the error in

the parameter space is of the order O
(

(log T )3

T 2 + n3 (log T )4

T 3 + n4 (log T )5

T 4

)
which is strictly better than that of SGD.

From the analysis, we need at least O (κ) iterations to come up with a guarantee, that might not be feasible when
the problem is ill-conditioned. We also see that we need to know the number of iterations before hand to set the
step size, making it at-least O (nκ) times lower than that required by SGD under similar settings.

References

[1] Léon Bottou. Curiously fast convergence of some stochastic gradient descent algorithms. 2009.

[2] M. Gürbüzbalaban, A. Ozdaglar, and P. Parrilo. Why Random Reshuffling Beats Stochastic Gradient Descent.
ArXiv e-prints, October 2015.

[3] J. Z. HaoChen and S. Sra. Random Shuffling Beats SGD after Finite Epochs. ArXiv e-prints, June 2018.

[4] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer Science &
Business Media, 2013.

[5] Ohad Shamir. Without-replacement sampling for stochastic gradient methods. In Advances in Neural Informa-
tion Processing Systems, pages 46–54, 2016.

[6] B. Ying, K. Yuan, S. Vlaski, and A. H. Sayed. Stochastic Learning under Random Reshuffling. ArXiv e-prints,
March 2018.

6


	Random Shuffle for Quadratic
	Convergence Analysis


